data science tutorials and snippets prepared by greysweater42
it’s a rather complicated, yet beautiful tool for boldly going where no man has gone before.
in other words, it enables you to extract valuable information from data.
We’ll be working on iris
dataset, which is easily available in Python (from sklearn import datasets; datasets.load_iris()
) and R (data(iris)
).
We will use a few of the most popular machine learning tools:
R base,
R caret,
Python scikit-learn,
Python API to tensorflow. tensorflow
was used in very few cases, because it is designed mainly for neural networks, and we would have to implement the algorithms from scratch.
Let’s prepare data for our algorithms. You can read more about data preparation in this blog post.
Python
from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
boston = datasets.load_boston()
# I will divide boston dataset to train and test later on
tensorflow
You can use functions from tensorflow_datasets module, but… does anybody use them?
base R
# unfortunately base R does not provide a function for train/test split
train_test_split <- function(test_size = 0.33, dataset) {
smp_size <- floor(test_size * nrow(dataset))
test_ind <- sample(seq_len(nrow(dataset)), size = smp_size)
test <- dataset[test_ind, ]
train <- dataset[-test_ind, ]
return(list(train = train, test = test))
}
library(gsubfn)
list[train, test] <- train_test_split(0.5, iris)
caret R
# docs: ..., the random sampling is done within the
# levels of ‘y’ when ‘y’ is a factor in an attempt to balance the class
# distributions within the splits.
# I provide package's name before function's name for clarity
trainIndex <- caret::createDataPartition(iris$Species, p=0.7, list = FALSE,
times = 1)
train <- iris[trainIndex,]
test <- iris[-trainIndex,]
The best description of SVM I found is in Data mining and analysis - Zaki, Meira. In general, I highly recommend this book.
Python
from sklearn.svm import SVC # support vector classification
svc = SVC()
svc.fit(X_train, y_train)
print(accuracy_score(svc.predict(X_test), y_test))
TODO: plotting svm in scikit
“base” R
svc <- e1071::svm(Species ~ ., train)
pred <- as.character(predict(svc, test[, 1:4]))
mean(pred == test["Species"])
caret R
svm_linear <- caret::train(Species ~ ., data = train, method = "svmLinear")
mean(predict(svm_linear, test) == test$Species)
Python
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(X_train, y_train)
print(accuracy_score(y_test, dtc.predict(X_test)))
TODO: an article on drawing decision trees in Python
“base” R
dtc <- rpart::rpart(Species ~ ., train)
print(dtc)
rpart.plot::rpart.plot(dtc)
pred <- predict(dtc, test[,1:4], type = "class")
mean(pred == test[["Species"]])
caret R
c_dtc <- caret::train(Species ~ ., train, method = "rpart")
print(c_dtc)
rpart.plot::rpart.plot(c_dtc$finalModel)
I described working with decision trees in R in more detail in another blog post.
Python
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print(accuracy_score(rfc.predict(X_test), y_test))
“base” R
rf <- randomForest::randomForest(Species ~ ., data = train)
mean(predict(rf, test[, 1:4]) == test[["Species"]])
caret R
c_rf <- caret::train(Species ~ ., train, method = "rf")
print(c_rf)
print(c_dtc$finalModel)
Python
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X, y)
print(accuracy_score(y, knn.predict(X)))
R
kn <- class::knn(train[,1:4], test[,1:4], cl = train[,5], k = 3)
mean(kn == test[,5])
TODO: caret r knn
K-means can be nicely plotted in two dimensions with help of PCA.
R
pca <- prcomp(iris[,1:4], center = TRUE, scale. = TRUE)
# devtools::install_github("vqv/ggbiplot")
ggbiplot::ggbiplot(pca, obs.scale = 1, var.scale = 1, groups = iris$Species,
ellipse = TRUE, circle = TRUE)
iris_pca <- scale(iris[,1:4]) %*% pca$rotation
iris_pca <- as.data.frame(iris_pca)
iris_pca <- cbind(iris_pca, Species = iris$Species)
ggplot2::ggplot(iris_pca, aes(x = PC1, y = PC2, color = Species)) +
geom_point()
plot_kmeans <- function(km, iris_pca) {
# we choose only first two components, so they could be plotted
plot(iris_pca[,1:2], col = km$cluster, pch = as.integer(iris_pca$Species))
points(km$centers, col = 1:2, pch = 8, cex = 2)
}
par(mfrow=c(1, 3))
# we use 3 centers, because we already know that there are 3 species
sapply(list(kmeans(iris_pca[,1], centers = 3),
kmeans(iris_pca[,1:2], centers = 3),
kmeans(iris_pca[,1:4], centers = 3)),
plot_kmeans, iris_pca = iris_pca)
interesting article - kmeans with dplyr and broom
TODO: caret r - kmeans
TODO: python - kmeans
Python
from sklearn.linear_model import LinearRegression
from sklearn import datasets
X, y = boston.data, boston.target
lr = LinearRegression()
lr.fit(X, y)
print(lr.intercept_)
print(lr.coef_)
# TODO calculate this with iris dataset
tensorflow
import tensorflow as tf
from sklearn.datasets import load_iris
import numpy as np
def get_data(tensorflow=True):
iris = load_iris()
data = iris.data
y = data[:, 0].reshape(150, 1)
x0 = np.ones(150).reshape(150, 1)
X = np.concatenate((x0, data[:, 1:]), axis=1)
if tensorflow:
y = tf.constant(y, name='y')
X = tf.constant(X, name='X') # constant is a tensor
return X, y
def construct_beta_graph(X, y):
cov = tf.matmul(tf.transpose(X), X, name='cov')
inv_cov = tf.linalg.inv(cov, name='inv_cov')
xy = tf.matmul(tf.transpose(X), y, name='xy')
beta = tf.matmul(inv_cov, xy, name='beta')
return beta
X, y = get_data()
beta = construct_beta_graph(X, y)
mse = tf.reduce_mean(tf.square(y - tf.matmul(X, beta)))
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
print(beta.eval())
print(mse.eval())
learning_rate = 0.01
n_iter = 1000
X_train, y_train = get_data(tensorflow=False)
X = tf.placeholder("float64", shape=(None, 4)) # placeholder -
y = tf.placeholder("float64", shape=(None, 1))
start_values = tf.random_uniform([4, 1], -1, 1, dtype="float64")
beta = tf.Variable(start_values, name='beta')
mse = tf.reduce_mean(tf.square(y - tf.matmul(X, beta)))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
_training = optimizer.minimize(mse)
batch_indexes = np.arange(150).reshape(5,30)
init = tf.global_variables_initializer()
with tf.Session() as sess:
init.run()
for i in range(n_iter):
for batch_index in batch_indexes:
_training.run(feed_dict={X: X_train[batch_index],
y: y_train[batch_index]})
if not i % 100:
print(mse.eval(feed_dict={X: X_train, y: y_train}))
print(mse.eval(feed_dict={X: X_train, y: y_train}), "- final score")
print(beta.eval())
base R
model <- lm(Sepal.Length ~ ., train)
summary(model)
lm()
function automatically converts factor variables to one-hot encoded features.
R caret
library(caret)
m <- train(Sepal.Length ~ ., data = train, method = "lm")
summary(m) # exactly the same as lm()
In these examples I will present classification of a dummy variable.
Python
from sklearn.linear_model import LogisticRegression
cond = iris.target != 2
X = iris.data[cond]
y = iris.target[cond]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
lr = LogisticRegression()
lr.fit(X_train, y_train)
accuracy_score(lr.predict(X_test), y_test)
base R
species <- c("setosa", "versicolor")
d <- iris[iris$Species %in% species,]
d$Species <- factor(d$Species, levels = species)
library(gsubfn)
list[train, test] <- train_test_split(0.5, d)
m <- glm(Species ~ Sepal.Length, train, family = binomial)
# predictions - if prediction is bigger than 0.5, we assume it's a one,
# or success
y_hat_test <- predict(m, test[,1:4], type = "response") > 0.5
# glm's doc:
# For ‘binomial’ and ‘quasibinomial’ families the response can also
# be specified as a ‘factor’ (when the first level denotes failure
# and all others success) or as a two-column matrix with the columns
# giving the numbers of successes and failures.
# in our case - species[1] ("setosa") is a failure (0) and species[2]
# ("versicolor") is 1 (success)
# successes:
y_test <- test$Species == species[2]
mean(y_test == y_hat_test)
R caret
library(caret)
m2 <- train(Species ~ Sepal.Length, data = train, method = "glm", family = binomial)
mean(predict(m2, test) == test$Species)
Python
from xgboost import XGBClassifier
cond = iris.target != 2
X = iris.data[cond]
y = iris.target[cond]
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
accuracy_score(xgb.predict(X_test), y_test)
“base” R
species <- c("setosa", "versicolor")
d <- iris[iris$Species %in% species,]
d$Species <- factor(d$Species, levels = species)
library(gsubfn)
list[train, test] <- train_test_split(0.5, d)
library(xgboost)
m <- xgboost(
data = as.matrix(train[,1:4]),
label = as.integer(train$Species) - 1,
objective = "binary:logistic",
nrounds = 2)
mean(predict(m, as.matrix(test[,1:4])) > 0.5) == (as.integer(test$Species) - 1)
TODO: R: xgb.save(), xgb.importance()
caret R